

乳糖(Lactose)和半乳糖(D-Galactose)含量试剂盒说明书

(货号: ADS-W-TDX048 微板法 48样 有效期: 3个月)

一、指标介绍:

乳糖在β-半乳糖苷酶作用下分解成半乳糖和葡萄糖,半乳糖接着在含有半乳糖脱氢酶的复合酶作用下被分解,同时使 NAD 还原成 NADH,通过检测 340nm 下 NADH 的增加量,分别计算得到乳糖和半乳糖的含量。

二、测试盒组成和配制:

试剂组分	试剂规格	存放温度	注意事项	
试剂一	液体 1 支	4℃保存	1. 临用前 8000g 4° C 离心 2mim 使试剂落入管底(可手动甩一甩); 2. 加入 0.6mL 蒸馏水混匀; 3. 保存周期与试剂盒有效期相同。	
试剂二	液体 5mL×1 瓶	4℃保存		
试剂三	粉体 1 支	4℃保存	1. 开盖前注意使粉体落入底部(可手动甩一甩); 2. 加入 1.1mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。	
试剂四	液体 12mL×1 瓶	4℃保存		
试剂五	液体 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使微量液体落入管底 (可手动甩一甩); 2. 再加 1.1mL 蒸馏水混匀; 3. 保存周期与试剂盒有效期相同。	
标准品	乳糖标品 (0.5mg/mL) 半乳糖标品 (0.25mg/mL)	4℃避光保存	1. 仅用来鉴定试剂是否正常; 2. 保存周期与试剂盒有效期相同。	

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、乳糖(Lactose)和半乳糖(D-Galactose)含量测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

- ① 组织样本: 0.1g 组织样本(水分充足的样本建议取 0.2g 左右),加 1mL 的蒸馏水研磨,粗提液全部转移到 EP 管中,12000rpm,常温离心 10min,上清液待测。
- ② 液体样品: 近似中性的澄清液体样本可直接检测; 若为酸性样本则需先用 NaOH(2M)调 PH 值约

7.4、然后室温静置 30min, 取澄清液体直接检测。

2、检测步骤:

- ① 酶标仪预热 30 min 以上, 调节波长到 340nm。
- ② 所有试剂解冻至室温 (25°C), 或可放在 25°C条件下水浴 5-15min, 为了减少操 作误差,建议使用排枪。
- ③ 做实验前可以选取几个样本做预测定, 若待检测指标含量较高可通过用蒸馏水稀 释找出适合本次检测样本的稀释倍数 D。
- ④ 依次在 96 孔板中加入:

	乳糖		半乳糖				
试剂组分(μL)	测定管	空白管 (仅做一次)	测定管	空白管 (仅做一次)			
样本	10		10				
蒸馏水	20	30	30	40			
试剂一	10	10					
试剂二	30	30	30	30			
混匀,25° C 条件下 <mark>孵育</mark> 20min							
试剂三	10	10	10	10			
试剂四	110	110	110	110			
混匀,25℃条件下孵育5min于340nm处读取各管的A1值							
试剂五	10	10	10	10			
混匀,25℃条件下反应20min于340nm处读取各管的A2值(若A值继续							
增加,需延长反应时间, <mark>直至2分钟内</mark> 的吸 <mark>光值</mark> 保持不变)							

- 【注】1. 若 A2 值大于 1 则需用蒸馏水对样本进行稀释,或者降低样本加样体积 V1(如减至 $5\mu L$,则蒸馏水相应 增加),则稀释倍数 D 或 V1 需代入公式重新计算。
 - 2. 若 A2-A1 的差值小于 0.1 则可增加样本取样质量 W 或增加样本加样体积 V1 (如增加至 20μL,则蒸馏 水相应减少), 则改变后的 W 或 V1 需代入公式重新计算。

五、结果计算:

$$\Delta A_{9.8}^{+} + 2.8 = (A2-A1)_{9.8}^{-} + (A$$

$$\Delta A_{*3.8} = (A2-A1)_{*3.88} = (A2-A1)_{*3.88}$$

 $\Delta A_{9,\text{th}} = \Delta A_{9,\text{th}} + 49,\text{th} - \Delta A_{49,\text{th}}$

1、按样本质量计算:

乳糖含量 $(mg/g鲜重)=[\Delta A_{\mathfrak{A}_{\mathfrak{A}_{\mathfrak{b}}}}\div(\epsilon\times d)]\times V2\times 10^3\times 342.3\div(V1\div V\times W)$

$$=2.2\times\Delta A_{\mathfrak{A}_{\mathfrak{A}_{\mathfrak{A}_{\mathfrak{B}}}}}\div W\times D$$

半乳糖含量(mg/g鲜重)=[$\Delta A_{*{\bf q},{\bf h}}$ ÷(ϵ ×d)]×V2×10³×180.16÷(V1÷V×W)

$$=1.159\times\Delta A_{\text{#3.18}} \div W\times D$$

2、按照体积计算:

乳糖含量 $(mg/mL)=[\Delta A_{\mathfrak{A}_{\mathbf{M}_{\mathbf{H}}}}\div(\epsilon\times d)]\times V2\times 10^3\times 342.3\div V1\times D$

一站式生命科学研究服务平台

$=2.2 \times \Delta A$ 乳糖 $\times D$

半乳糖含量(mg/mL)=[$\Delta A_{+{\bf R}{\bf R}}$ ÷($\epsilon \times d$)]×V2×10³×180.16÷V1×D

 $=1.159 \times \Delta A_{$ 半乳糖 $} \times D$

ε---NADH的摩尔吸光系数为6.22×10³L/mol/cm; d---光径距离, 0.5cm;

V---提取液体积, 1mL;

V2---反应总体积, 200μL=2×10⁴L;

半乳糖分子量---180.16;

D---稀释倍数,未稀释即为1。

V1---样本体积, 10μL=0.01mL;

乳糖分子量---342.3;

W---样本质量, g;